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Abstract Na2BiZn2V3O12 ceramic was investigated as a

promising microwave dielectric material for the ultra-low-

temperature co-fired ceramic (ULTCC) technology. Dense

Na2BiZn2V3O12 ceramic was prepared using the conven-

tional solid-state method from 560 to 640 �C. X-ray

diffraction data show that Na2BiZn2V3O12 ceramic crys-

tallized into a cubic garnet structure with a space group Ia-

3d. The sample sintered at 600 �C for 4 h has the highest

relative density of 96.3 % and exhibits the optimum

microwave properties with a relative permittivity of 22.3, a

quality factor of 19,960 GHz (at 8.7 GHz), and a temper-

ature coefficient of resonance frequency of ?15.5 ppm/�C.
The Na2BiZn2V3O12 ceramic was found to be chemically

compatible with highly conductive aluminum and sliver

electrode. These results confirm that Na2BiZn2V3O12

ceramic can be a promising candidate for the ULTCC

technology.

1 Introduction

To achieve the miniaturization and integration of the

microwave components for wireless communication, low-

temperature co-fired ceramic (LTCC) technology has

become an important method that enables the fabrication of

three-dimensional ceramic modules with a low dielectric

loss and co-fired metal electrodes [1, 2]. For LTCC tech-

nology, a low sintering temperature lower than the melting

point of metal electrodes (961 �C for Ag) is critical in

addition to the appropriate relative permittivity (er), a high
quality factor (Q 9 f), and a near-zero temperature coef-

ficient of resonant frequency (sf) [3–5].
Recently, searching for novel microwave dielectric

ceramics with intrinsic low firing temperatures, such as

TeO2–based [6, 7], Bi2O3–based [8, 9], andMoO3–based [10]

systems, has attracted much attention. Some of them could

co-fire with aluminum electrodes due to their ultra-low sin-

tering temperatures\660 �C. The application of Al as the

inner electrodes has accelerated the ultra-low-temperature co-

fired ceramic (ULTCC) technology [10, 11]. More recently,

several ULTCCs have been reported by the researchers, for

example, BaTe4O9 (er = 17.5, Q 9 f = 54,700 GHz,

sf = -90 ppm/�C and S. T. = 550 �C) [6], Bi2Mo2O9

(er = 38, Q 9 f = 12,500 GHz, sf = ? 31 ppm/�C and S.

T. = 620 �C) [10], and NaAgMoO4 (er = 7.9, Q 9 f =

33,000 GHz, sf = -120 ppm/�C and S. T. = 400 �C) [12].
In our previous work [13, 14], some garnet vanadates

were reported to have good microwave dielectric properties,

such as, LiCa3ZnV3O12 (er * 11.5, Q 9 f * 81,100 GHz,

sf * -72 ppm/�C, S. T. * 900 �C) and Na2YMg2V3O12

(er * 12.3,Q 9 f * 23,180 GHz and sf * -4.1 ppm/�C,
S. T. * 850 �C). Most of them have chemical compati-

bility with silver electrode when sintered at their densifi-

cation temperatures, making them possible candidates for
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LTCC applications. More recently, Zhou et al. [15] reported

that Na2BiMg2V3O12 has an ultra-low sintering temperature

*660 �C with a er * 23.2, a Q 9 f * 3700 GHz and a

near-zero sf * ?8.2 ppm/�C. Therefore, it is worthwhile to
investigate the Na2BiMV3O12 (M = Zn2?, Co2?, Ni2?)

systems for an attempt to search for novel ultra-low-tem-

perature co-fired ceramics.

In the present paper, an ultra-low-temperature co-fired

ceramic Na2BiZn2V3O12 with garnet structure was repor-

ted. The sintering behavior, microstructure, microwave

dielectric properties, and its chemical compatibility with

both aluminum and silver were investigated in detail.

2 Experimental procedure

Na2BiZn2V3O12 ceramic was prepared by the conventional

solid-state reaction with high-purity oxides or carbonate

powders, Na2CO3 (99 %, Guo-Yao Co. Ltd., Shanghai,

China), Bi2O3 (99 %, West Long Chemical Co., Ltd.,

Guangdong, China), ZnO (99 %, Guo-Yao Co. Ltd.,

Shanghai, China), and NH4VO3 ([99 %, West Long

Chemical Co., Ltd., Guangdong, China). Raw materials

were weighed stoichiometrically and mixed, ball-milled in

alcohol media for 6 h, followed by the calcination at

520 �C for 4 h. The calcined powders were ball-milled for

6 h, dried, and pressed into cylinders with 12 mm in

diameter and 7 mm in height under a pressure of 200 MPa.

Polyvinyl alcohol (PVA) was added to the powders as

binder. The samples were fired at 500 �C for 2 h to burn-

out the organic binder, and then sintered at 560–640 �C for

4 h with a heating rate of 5 �C/min. To investigate the

chemical compatibility, Na2BiZn2V3O12 powders were

mixed with 20 wt% aluminum and silver powders and co-

fired at 640 �C for 4 h.

X-ray diffraction (XRD) was employed to analyze the

phase composition (1.54059 Å, Model X’Pert PRO,

PANalytical, Almelo, Holland) in the 2h range of 10–80o.

Bulk densities of the sintered samples were measured using

Archimede’s method. The microstructures were examined

by scanning electron microscopy (SEM; FE-SEM, Model

S4800, Hitachi, Japan). The microwave dielectric proper-

ties were analyzed using a network analyzer (Model
Fig. 1 X-ray diffraction patterns of Na2BiZn2V3O12 ceramics sin-

tered at different temperatures from 560 to 640 �C

Fig. 2 SEM images of Na2BiZn2V3O12 ceramics sintered at a 560 �C, b 580 �C, c 600 �C and d 620 �C for 4 h in air
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N5230A, Agilent Co., Palo Alto, California) and a tem-

perature chamber (Delta 9039, Delta Design, San Diego,

CA). The sf value was calculated using the following

relationship:

sf ¼
f85 � f25

ð85� 25Þ � f25
ð1Þ

where, f85 and f25 are the resonant frequencies of the

dielectric resonator at temperature 85 and 25 �C,
respectively.

3 Results and discussions

Figure 1 shows the XRD patterns of the Na2BiZn2V3O12

ceramics sintered from 560 to 640 �C for 4 h. The

observed peaks matched well with JCPDS card No.

52-1795 for Na2BiZn2V3O12 with no secondary phases

detected, indicating the formation of pure-phase Na2-
BiZn2V3O12 with a cubic garnet structure.

SEM micrographs of Na2BiZn2V3O12 ceramics sintered

at different temperatures are shown in Fig. 2. It shows that

Na2BiZn2V3O12 ceramics could be well densified within

the certain temperature range of 560–620 �C. The ceramics

sintered at 560 �C showed a relatively porous microstruc-

ture (Fig. 2a) with small grains about 2–3 lm. With the

increasing sintering temperature, the grain size increased

along with a significant decrease in the porosity. A uniform

and dense microstructure with closely packed grain mor-

phology (*5 lm in average grain size) was obtained in the

sample sintered at 600 �C. However, as the sintering

temperature increased to 620 �C, abnormal grain growth

and grain melting began to appear.

The optical absorption properties Na2BiZn2V3O12

ceramic were investigated by UV–Vis techniques. The

values of the band gap energy (Eg) were calculated using

following equation [16–18]:

ahvð Þ ¼ A hv�Eg

� �n ð2ÞFig. 3 UV–Vis light absorption spectrum of the Na2BiZn2V3O12.

Inset plots of (ahv)2 versus energy hv of Na2BiZn2V3O12 ceramic

Fig. 4 The relative densities

(a) and microwave dielectric

properties er (b), Q 9 f (c), and
sf (d) of Na2BiZn2V3O12

ceramics at different sintering

temperatures
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where A is a proportional constant, h is Planck’s constant,

v is the frequency of vibration, Eg is the band gap energy, a
is the absorption coefficient per unit length, and n is 0.5 and

2.0 for a direct transition semiconductor and indirect

transition semiconductor, respectively [19–21]. The

Ultraviolet–visible diffuse reflection spectra and plots of

(ahv)2 versus energy hv of Na2BiZn2V3O12 ceramic is

displayed in Fig. 3. In the inset, the Na2BiZn2V3O12

sample shows a band gap energy of 3.13(8) eV.

Figure 4 shows the variations in relative densities and

microwave dielectric properties of Na2BiZn2V3O12

ceramics as a function of the sintering temperature. The

relative density showed a obvious dependence on the sin-

tering temperature and a maximum value of 96.3 %

(4.73 g/cm3 of the theoretical density *4.91 g/cm3) at

600 �C. As shown in Fig. 4b, er increased from 21.1 to 22.3

as the sintering temperature increased from 560 to 600 �C,Fig. 5 X-ray diffraction patterns of Na2BiZn2V3O12 cofired ceramics

with 20 wt% Al and 20 wt% Ag at 600 �C for 4 h

Fig. 6 Backscattered electron image micrograph and EDS analysis of the Na2BiZn2V3O12 ceramic with 20 wt% aluminum (a) and 20 wt%

silver (b) sintered at 600 �C for 4 h
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and then slightly decreased with further increasing tem-

perature. The variation in er with the increasing sintering

temperature is consistent with that of the relative density.

The lower permittivity at lower sintering temperature could

be partly attributed to the existence of pores. The influence

of the porosity on er could be eliminated by applying

Bosman and Having’s correction [22, 23]:

ecorrected ¼ em 1 þ 1:5pð Þ ð3Þ

where, p is the fractional porosity; ecorrected and em are the

corrected and measured values of permittivity, respec-

tively. The ecorrected is about 23.5 for Na2BiZn2V3O12 sin-

tered at 600 �C.
It is well known that there are many factors contributing

to the dielectric loss at microwave region: the intrinsic

factors and the extrinsic ones such as impurities, substitu-

tion, grain boundaries, grain morphology and shape, sec-

ondary phase, pores, dominate the Q 9 f value [24, 25]. As

shown in Fig. 4c, an increase in Q 9 f value with sintering

temperature was observed and a maximum value of

19,960 GHz was reached when sintered at 600 �C for 4 h.

Thereafter, the Q 9 f value decreased, which might be due

to extrinsic factors, such as the increase of pores and the

abnormal grain growth. The sf values of Na2BiZn2V3O12

ceramics slightly fluctuated around ?18 ppm/�C over the

sintering range from 560 to 600 �C.
The XRD patterns of the cofired samples with 20 wt%

aluminum and silver sintered at 600 �C are shown in Fig. 5

and XRD pattern of the pure Na2BiZn2V3O12 ceramic is

also presented for comparison. For the cofired ceramic

samples, only the peaks of Na2BiZn2V3O12 and the metals

could be observed with no additional peaks detected. The

backscattered electron image micrograph and EDS analysis

of the cofired ceramics with 20 wt% aluminum (a) and

silver (b) are shown in Fig. 6. The analysis revealed that

the cofired ceramics were composed of both Na2BiZn2-
V3O12 grains and metal grains. These results confirm no

chemical reaction between Na2BiZn2V3O12 and aluminum

or silver when sintered at 600 �C for 4 h.

4 Conclusions

Na2BiZn2V3O12 ceramic can be prepared by conventional

solid state reaction method and densified after sintering

above 560 �C for 4 h in air. Optical absorption properties

were investigated by UV–Vis techniques. The best micro-

wave dielectric properties can be obtained in Na2BiZn2-
V3O12 ceramic sintered at 600 �C for 4 h, with a

permittivity of 22.3, Q 9 f value of 19,960 GHz (at

8.7 GHz), and a positive sf value of ?15.5 ppm/�C. From
the XRD and EDS analysis, the Na2BiZn2V3O12 ceramic

was found to be chemically compatible with aluminum or

silver powders at its sintering temperatures. Based on the

experimental results of this research, Na2BiZn2V3O12

seems to be an attractive candidate for the ultra-low tem-

perature co-fired ceramic technology.
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